skip to main content


Search for: All records

Creators/Authors contains: "Narasimhan, Srinivasa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ultrasonically-sculpted gradient-index optical waveguides enable non-invasive light confinement inside scattering media. The confinement level strongly depends on ultrasound parameters (e.g., amplitude, frequency), and medium optical properties (e.g., extinction coefficient). We develop a physically-accurate simulator, and use it to quantify these dependencies for a radially-symmetric virtual optical waveguide. Our analysis provides insights for optimizing virtual optical waveguides for given applications. We leverage these insights to configure virtual optical waveguides that improve light confinement fourfold compared to previous configurations at five mean free paths. We show that virtual optical waveguides enhance light throughput by 50% compared to an ideal external lens, in a medium with bladder-like optical properties at one transport mean free path. We corroborate these simulation findings with real experiments: we demonstrate, for the first time, that virtual optical waveguides recycle scattered light, and enhance light throughput by 15% compared to an external lens at five transport mean free paths.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. null (Ed.)
    To safely navigate unknown environments; robots must accurately perceive dynamic obstacles. Instead of directly measuring the scene depth with a LiDAR sensor; we explore the use of a much cheaper and higher resolution sensor: programmable light curtains. Light curtains are controllable depth sensors that sense only along a surface that a user selects. We use light curtains to estimate the safety envelope of a scene: a hypothetical surface that separates the robot from all obstacles. We show that generating light curtains that sense random locations (from a particular distribution) can quickly discover the safety envelope for scenes with unknown objects. Importantly; we produce theoretical safety guarantees on the probability of detecting an obstacle using random curtains. We combine random curtains with a machine learning based model that forecasts and tracks the motion of the safety envelope efficiently. Our method accurately estimates safety envelopes while providing probabilistic safety guarantees that can be used to certify the efficacy of a robot perception system to detect and avoid dynamic obstacles. We evaluate our approach in a simulated urban driving environment and a real-world environment with moving pedestrians using a light curtain device and show that we can estimate safety envelopes efficiently and effectively. 
    more » « less
  5. null (Ed.)
  6. Reconstructing 4D vehicular activity (3D space and time) from cameras is useful for autonomous vehicles, commuters and local authorities to plan for smarter and safer cities. Traffic is inherently repetitious over long periods, yet current deep learning-based 3D reconstruction methods have not considered such repetitions and have difficulty generalizing to new intersection-installed cameras. We present a novel approach exploiting longitudinal (long-term) repetitious motion as self-supervision to reconstruct 3D vehicular activity from a video captured by a single fixed camera. Starting from off-the-shelf 2D keypoint detections, our algorithm optimizes 3D vehicle shapes and poses, and then clusters their trajectories in 3D space. The 2D keypoints and trajectory clusters accumulated over long-term are later used to improve the 2D and 3D keypoints via self-supervision without any human annotation. Our method improves reconstruction accuracy over state of the art on scenes with a significant visual difference from the keypoint detector’s training data, and has many applications including velocity estimation, anomaly detection and vehicle counting. We demonstrate results on traffic videos captured at multiple city intersections, collected using our smartphones, YouTube, and other public datasets. 
    more » « less
  7. We consider the task of 3D pose estimation and tracking of multiple people seen in an arbitrary number of camera feeds. We propose TesseTrack, a novel top-down approach that simultaneously reasons about multiple individuals’ 3D body joint reconstructions and associations in space and time in a single end-to-end learnable framework. At the core of our approach is a novel spatio-temporal formulation that operates in a common voxelized feature space aggregated from single- or multiple camera views. After a person detection step, a 4D CNN produces short-term persons pecific representations which are then linked across time by a differentiable matcher. The linked descriptions are then merged and deconvolved into 3D poses. This joint spatio-temporal formulation contrasts with previous piecewise strategies that treat 2D pose estimation, 2D-to-3D lifting, and 3D pose tracking as independent sub-problems that are error-prone when solved in isolation. Furthermore, unlike previous methods, TesseTrack is robust to changes in the number of camera views and achieves very good results even if a single view is available at inference time. Quantitative evaluation of 3D pose reconstruction accuracy on standard benchmarks shows significant improvements over the state of the art. Evaluation of multi-person articulated 3D pose tracking in our novel evaluation framework demonstrates the superiority of TesseTrack over strong baselines. 
    more » « less